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ABSTRACT: This work set out to assess the performance of four forecast systems [the Short-Range Ensemble Forecast
(SREF), High-Resolution Rapid Refresh Ensemble (HRRRE), the National Blend of Models (NBM), and the Probabilis-
tic Snow Accumulation product (PSA) from the National Weather Service (NWS) Boulder, Colorado, Weather Forecast
Office] when predicting snowfall events around the Intermountain West to advise winter weather decision-making pro-
cesses at Denver International Airport. The goal was to provide airport personnel and the Boulder NWS Forecast Office
with operationally relevant verification results on the timing and severity of these events so they are able to make better-
informed decisions to minimize negative impacts of storms. Forecasts of snow events using various probability thresholds
and a climatological snow-to-liquid ratio of 15:1 were evaluated against Meteorological Aerodrome Reports (METARs)
for 24-h periods following four decision-making times spaced equally throughout the day. For the ensembles, a frequentist
approach was used: the forecast probability equaled the percentage of ensemble members that predicted a snow event.
The results show that the NBM had the best timing of snow events out of the products, while all the products tended to
overforecast snow amount. Additionally, NBM had fewer snow events and rarely had high probabilities of snow, unlike
the other forecast products.
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1. Introduction

Many industries depend heavily on weather forecasts to ei-
ther increase revenue or prevent loss (e.g., tourism, agricul-
ture, transportation, energy). The aviation sector, both from
the airline and airport operations perspectives, requires accu-
rate and timely forecasts to ensure customer and employee
safety, airspace efficiency, and reduced costs (Morss et al.
2022). As forecast systems evolve, aviation decision-makers
are presented with more and more options upon which to
base operational decisions. Probabilistic weather forecasts are
one possibly advantageous way to provide aviation decision-
makers with the information they need. The Forecasting a
Continuum of Environmental Threats (FACETs) (Rothfusz
et al. 2018) is a prime example of probabilistic information be-
ing employed for a variety of hazards.

Aviation decision-makers must not only be able to interpret
probabilistic forecasts, but understand how well they perform.
However, these decision-makers do not necessarily use the
forecast in the same way as another user and thus the verifica-
tion methodology needs to reflect how the forecast product is
actually used from day to day and what decisions are made

based on the information. Murphy and Epstein (1967) refer to
this type of evaluation as an “operational evaluation” where
the focus is on the stakeholder and the verification approach
varies with each decision-maker. Our study was crafted through
this lens to determine the performance of several probabilistic
forecast products for snowfall events at Denver International
Airport (KDEN), with the airport operations and maintenance
teams being the primary stakeholders. Extensive background re-
search into the use case of the airport was conducted by Morss
et al. (2022) and is summarized in section 2.

Evaluations of probabilistic snow forecast products have
been performed (e.g., Stauffer et al. 2018; Scheuerer and
Hamill 2019) as have verification studies of forecasts in the con-
text of aviation operations (e.g., Mahringer 2008; Rudack and
Ghirardelli 2010; Kim et al. 2011; Lee et al. 2020), but, to the
authors’ knowledge, not in a true impact-based nature for
stakeholders (or decision-makers) concerned with runway
snowfall and accumulation at airports. Additionally, this study
not only assesses the performance of the products in terms of
snow amount, but also how well the forecast systems capture
the start and end times of the hazard. The time snow begins to
accumulate on the runways is a critical part of the forecast for
airport operations as it has implications for scheduling of staff
and resources (Morss et al. 2022). National Weather Service
forecasters have also reported that timing information is critical
for providing impact-based decision support services (IDSS) to
their core partners (with airports being a core partner for many
offices), particularly in a map-based form (Demuth et al. 2020).

In the context of pre-storm preparations for snow events at
the airport, this study aims to improve understanding of how

Denotes content that is immediately available upon publica-
tion as open access.

Michael Kraus: Retired.

Corresponding author: DanaM. Uden, dana.uden@noaa.gov

DOI: 10.1175/WAF-D-22-0170.1

Ó 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding
reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

U D EN E T A L . 1341AUGUST 2023

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/02/23 02:23 PM UTC

mailto:dana.uden@noaa.gov
http://www.ametsoc.org/PUBSReuseLicenses


ensemble systems might be able to provide enhanced forecast
information. The goal was to evaluate the performance of the
Short-Range Ensemble Forecast (SREF), High-Resolution
Rapid Refresh Ensemble (HRRRE), National Blend of Mod-
els (NBM), and the Probabilistic Snow Accumulation product
(PSA) from the National Weather Service Boulder, Colorado,
Weather Forecast Office (WFO) with an operational focus
(the model systems will be explained in section 3). The forecast
systems were evaluated against Meteorological Aerodrome Re-
ports (METARs) at 24 airports around the Intermountain West
(Fig. 1 and Table 1). The airports were selected for their similar-
ity in elevation and climatology to KDEN and included in the
evaluation to increase sample size. The time periods of analysis
for this study are November 2018–April 2019 (excluding most
of January 2019),1 which will be referred to as season 1 and

December 2019–April 2020 (season 2). Only the SREF and
HRRRE data were available for season 1 and thus are the only
two products used in the interannual comparison. The HRRRE
domain was also limited in season 1 (stations depicted by the
red points in Fig. 1 fell outside the domain). Background on the
user research conducted by Morss et al. (2022) is in section 2,
details on the forecast products are described in section 3, the
event methodology is outlined in section 4, and results of the
evaluation are presented in section 5.

2. Background user research

During the winters of 2017/18 and 2018/19, Morss et al.
(2022) from the National Center for Atmospheric Research
(NCAR) conducted interviews, shadowed staff during snow
events, and observed how the airport staff received and used
weather information. Analysis of these data revealed two
stages in which winter weather information was utilized at
KDEN: pre-event planning and in situ tactical decision-making.
This article focuses on forecast information for the pre-event
stage, when the decision lead times best match with the capabili-
ties of the modeling systems studied here. Before snow begins,
the airport decision-makers gather forecast information about
the timing and amount of snow, and other variables from multi-
ple sources, including a private weather forecasting contractor
and the Boulder WFO. They use this information to help make
decisions about how to prepare for snow removal from runways
and other paved surfaces, which is most important to airport op-
erations, and staffing (Morss et al. 2022).

FIG. 1. Locations of the 24 airports used in this study. The red
markers indicate airports not used in season 1 due to HRRRE do-
main limitations. The airports are listed in Table 1.

TABLE 1. The 24 airports used in this study and their elevation.
The airports in italics were excluded from the season 1 analysis
due to domain limitations.

Airport State Code Elevation (m)

Air Force CO KAFF 2003
CO Springs CO KCOS 1856
Denver CO KDEN 1640
Greeley CO KGXY 1420
Pueblo CO KPUB 1420
Trinidad CO KTAD 1756
Bozeman MT KBZN 1361
Great Falls MT KGTF 1119
Helena MT KHLN 1182
Livingston MT KLVM 1418
Missoula MT KMSO 975
Albuquerque NM KABQ 1618
Las Vegas NM KLVS 2091
Santa Fe NM KSAF 1930
Taos NM KSKX 2161
Logan UT KLGU 1355
Ogden/Hill AFB UT KHIF 1459
Salt Lake City UT KSLC 1286
Casper WY KCPR 1621
Cheyenne WY KCYS 1868
Cody WY KCOD 1553
Jackson WY KJAC 1961
Laramie WY KLAR 2216
Sheridan WY KSHR 1202

1 Data for January 2019 were unavailable due to the federal gov-
ernment shutdown, which resulted in disruption to data feeds.
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The primary decision points prior to an event involve decid-
ing which snow alert level to declare and at what time and if/
when chemicals need to be applied to the runways and other
paved areas. The snow alert level, based mostly on predicted
snow accumulation amount, is especially important because it
determines how many people will be on shift and how much
snow removal equipment will be available to handle the first
part of the storm. There are four alert levels in the KDEN
Snow and Ice Control Plan: cautionary, A, B, and emergency.
The following snow amounts correspond, respectively, to the
alert levels and are the basis for the thresholds selected in this
study as well as what is presented in the PSA: from a trace to
1 in., 1–3 in., 3–10 in., and greater than 10 in. The final deci-
sion on the alert level is typically determined at a 1000 local
time meeting, usually on the day of or day before an event
(Morss et al. 2022).

Morss et al. (2022) also looked at how the airport staff
could use probabilistic information. The airport operations
personnel have many years of experience with making deci-
sions based on uncertain weather forecast information, but
they do not have a sophisticated statistical understanding of
probability theory. This study will include the colloquial ter-
minology used by these decision-makers. Morss et al. (2022)
reported personnel gaining a sense of forecast confidence
from looking at many different sources of weather informa-
tion and from talking with forecasters, both from the Boulder
WFO and KDEN’s paid forecast services contractor. They
looked at forecast ranges (and sometimes probabilities) and
alluded to the idea that “forecasts containing uncertainty in-
formation are more likely to be valuable if they are reliable,
unbiased, and sufficiently sharp to provide information that is
useful for their decisions” (Morss et al. 2022). The amount of
uncertainty in a forecast (i.e., low probabilities spread across

a wide range of storm total snowfall amounts) can sometimes
cause the airport to elevate the snow alert level as a precau-
tion, particularly if the snow overlaps with a time of day or
year when airport traffic is high. Morss et al. (2022) suggested
that an understanding of forecast skill and improved information
about forecast uncertainty could be beneficial to the decision-
makers in terms of both timing (onset and cessation) and severity
(snow amount) of events.

The research conducted by Morss et al. (2022) provided
many informative details for designing an impact-based as-
sessment of probabilistic snow forecasts for airport decision-
makers. The thresholds for snow amount were selected based
off of those used in the snow alert declaration decisions, and
freezing temperatures (2-m air temperature less than or equal
to 328F) were used as a filter to get closer to assessing snow
accumulating on concrete/asphalt. The 1000 local time meet-
ing time to determine the alert level was incorporated into the
forecast issuance and lead times selected to be evaluated (see
section 4).

Additionally, many of the results and conclusions in this
study are presented from the conservative standpoint that
an airport stakeholder would take, that is, choosing a proba-
bility threshold that produces high snowfall biases and longer
events to ensure the airport is not underprepared. In their
user interviews, Morss et al. (2022) heard statements like “we
are always going to err on the side of caution” and “I feel bet-
ter being a little more conservative than not.” While safety is
a primary goal for the airport, there are also other considera-
tions like costs, predictability, and efficiency. Because of these
complex factors and situational decisions that sometimes do
not depend on the weather (i.e., air traffic congestion and air-
line decisions), Morss et al. (2022) ascertained that a cost-loss
model would not be appropriate for this scenario; the model is

TABLE 2. Characteristics of the forecast systems used in the evaluation: the Short-Range Ensemble Forecast (SREF), the High-
Resolution Rapid Refresh Ensemble (HRRRE), the National Blend of Models (NBM), and the Probabilistic Snow Accumulation
product (PSA). Season 1 was the winter season from 2018 to 2019, and season 2 was the winter season from 2019 to 2020.

SREF HRRRE NBM PSA

Version Operational Experimental 3.2, text product N/A, human-generated
Horizontal resolution 16 km 3 km Point forecast Point forecast
Time period Seasons 1 and 2 Seasons 1 and 2 Season 2 Season 2
Latency 4 h 4 h 1 h }

Initial conditions Multianalysis, blended
perturbation,
multilateral boundary
conditions from Global
Ensemble Forecast
System

The first nine members
of the 36-member
HRRR Data
Assimilation System

Specific to NBM input
models

}

Physics NMMB and ARW cores,
quasi-stochastic physics,
multiphysics

See Benjamin et al.
(2016)

Specific to NBM input
models

}

Issuances 0300, 0900, 1500,
2100 UTC

0000, 1200 UTC Hourly Typically, four times
per day

Forecast hours 87 h, every 3 h 36 h, every hour 25 h, every hour 48 h, every 3 h
Members 26 9 31, but not all available

at each hour
}

Reference Du et al. (2015) Dowell et al. (2018) Craven et al. (2020) NWS WFO Boulder
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too idealized to encompass all aspects of the decision-making
process at the airport. Because the cost-loss model was not ap-
propriate in this case, most traditional verification metrics for
probabilistic forecasts (i.e., Brier scores, receiver operating char-
acteristics, etc.) were not employed in this study and other met-
rics more in line with the airport’s use case were used instead
(see section 4).

3. Forecast systems

Table 2 depicts the four forecast systems employed in this
study and their key characteristics. Latency is defined as the
amount of processing time to produce output data; it is the
difference between the issuance time and the time the data
are available for operational use or distribution. Further de-
tails on each forecast system are provided in the following
subsections.

a. SREF

The SREF is an operational ensemble forecast system
run at the National Centers for Environmental Prediction
(NCEP) at approximately 16-km horizontal resolution. It con-
sists of 26 members; half of the members are made up of
Weather Research and Forecasting Model (WRF) Advanced
Research WRF core (ARW) members while the others come
from the Nonhydrostatic Multiscale Model on the B-grid
(NMMB) core. The model output is available in 3-h incre-
ments out to 87 h and is updated four times per day at 0300,
0900, 1500, and 2100 UTC (Du et al. 2015). The last major up-
date to the SREF occurred in October 2015 (see https://www.
nco.ncep.noaa.gov/pmb/changes/) and therefore the model
did not change during the period of this assessment. Snowfall
data from the individual ensemble members was used instead
of the precalculated ensemble summary output. While the

FIG. 2. An example of the PSA product from 28 Dec 2020.
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SREF is slated to be phased out soon (see, e.g., NWS 2018), it
is still being used in operations and therefore was included in
this evaluation as a baseline.

b. HRRRE

Unlike the SREF, the HRRRE is not yet an operational
product and is currently in development at the National Oceanic
and Atmospheric Administration’s Global Systems Laboratory.
It employs only the WRF-ARW core (versions 3.8 and 3.9) in
the ensemble system. The HRRRE uses the same ;3-km hori-
zontal resolution as the deterministic HRRR and is available ev-
ery hour out to 36 h. While the data-assimilation ensemble
contains 36 members from the Global Data Assimilation System
(GDAS), the HRRRE output contains only nine members
(Dowell et al. 2018). The 0000 and 1200 UTC runs were used in
this study as they were the only forecast issuances available at
the time. The effect of the 3-h issuance offset with the SREF
was deemed insignificant as performance was consistent across
leads.

A number of changes were made during the 2018/19 winter
season and between the 2018/19 and 2019/20 winter seasons
that could have resulted in an impact on the snowfall forecast
performance. First, the initialization changed to the Rapid
Refresh (RAP; a 13-km North American model), which is it-
self initialized from the Finite Volume Cubed (FV3)-based
Global Forecast System (GFS) version 15. The WRF was also

updated to version 3.9 between seasons, and the domain was
increased to include the full contiguous United States. There-
fore, more airports were included in the season 2 analysis due
to the westward expansion of the domain. Last, the ensemble
spread was increased due to a couple of factors: the move
to a rolling ensemble and the addition of stochastic physics
(Global Systems Laboratory 2021). The HRRRE is used
here as a proxy for the future Environmental Modeling
Center (EMC) high-resolution regional ensemble; the SREF
and the High-Resolution Ensemble Forecast, a multimodel,
poor-man’s ensemble system, are slated to be replaced by a
new, single model core ensemble similar to the HRRRE
(NWS 2018).

c. NBM

The NBM was created to provide a coherent and reliable na-
tional forecast product as the NWS forecasters’ responsibilities
evolve into more IDSS duties (Craven et al. 2020). It is a blend
of many forecast models and systems, both deterministic and
probabilistic, with different resolutions, temporal scales, and pur-
poses. The approach involves bias correcting the individual
model members [using the Unrestricted Real Time Mesoscale
Analysis (URMA), as a truth set; see De Pondeca et al. 2011]
prior to blending with an optimum weighting scheme. A final
quality control check is then performed to ensure consistency.
The weight each model has in the final product depends on the

TABLE 3. Data used for each product and 24-h period following each reference time. Note that the ideal leads for the SREF are
8–31, but are unavailable due to the 3-hourly nature of the product. Therefore, a linear adjustment was applied to the snow
accumulation to account for the discrepancy.

Reference time

Product

1700 UTC 2300 UTC 0500 UTC 1100 UTC

Issue Leads Issue Leads Issue Leads Issue Leads

SREF 0900 UTC 9–33 h 1500 UTC 9–33 h 2100 UTC 9–33 h 0300 UTC 9–33 h
HRRRE 1200 UTC 5–28 h 1200 UTC 11–34 h 0000 UTC 5–28 h 0000 UTC 11–34 h
NBM 1600 UTC 1–24 h 2200 UTC 1–24 h 0400 UTC 1–24 h 1000 UTC 1–24 h
METAR 0–23 h 0–23 h 0–23 h 0–23 h

FIG. 3. A schematic depicting the snow event methodology employed in this study. The four rows of gray cells rep-
resent the 24-h periods following the four decision-making times. An example observed snow event is illustrated by
the snowflake icons; the event lasted from 0200 to 1200 local time (LT). For the 1700 UTC meeting time, the 24-h pe-
riod ended prior to when snow actually stopped falling, while snow had already begun prior to the 1100 UTCmeeting
time.
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forecast parameter in question; weights for continuous parame-
ters are based on a decaying average bias correction algorithm
(Cui et al. 2012; Rudack 2020), while the discontinuous parame-
ters have expert weights calculated from previous verification
studies (Rudack 2020).

Version 3.2 of the NBM was utilized in this assessment (for
season 2 only). It was experimental during the beginning
of season 2, but became operational on 19 February 2020
(Meteorological Development Laboratory 2021). Version 3.2
of the NBM provided a new text product in addition to the
gridded output, added more probabilistic fields, and improved
probabilistic quantitative precipitation forecasts in the west-
ern mountains of the United States (Rudack 2020). As there
were no probabilistic snow amount variables for accumulation
periods less than 24 h (Craven et al. 2020) in the gridded out-
put (which was deemed too coarse a temporal resolution for
airport applications), the text products for each airport were
used in this study. The NBM text products are available every
hour on the hour and provide forecasts out to hour 25. How-
ever, the 31 model inputs to the ensemble are mostly older
due to latency of the individual members; many hours contain
a relatively small number of models (Rudack 2020). It is im-
portant to note that the NBM is not independent from the
previous forecast products mentioned, both the SREF and
HRRR (which is the foundation of the HRRRE) are inputs
(Craven et al. 2020). Details on the parameters used from the
NBM text files are provided in section 4.

d. PSA

The PSA forecast (e.g., Fig. 2) is a text product produced
by the Boulder WFO specifically for public- and private-based
airport operations at KDEN, with a goal of meeting the needs

of several core partners that make high impact decisions re-
garding airport operations during snow events. It is typically
updated four times per day (overnight, morning, afternoon,
and evening}the exact times are not predetermined) if the
probability of snow accumulation from the time of issuance
out to 36 h at KDEN is at least 10%. Forecasters at Boulder
WFO use all available numerical weather prediction (NWP)-
based forecast data (including the NBM, SREF, convective-
allowing models, global models, ensemble-based systems, and
probabilistic data based on NWP) to generate a subjective
probabilistic snow accumulation forecast for the airport,
broken into operationally relevant 3-h increments. The WFO
did not have access to the experimental HRRRE. The 3-h
temporal resolution of the product is a direct result of feed-
back from KDEN decision-makers, as are the threshold col-
umns, which represent accumulations needed for the different
alert levels.2

Unlike the other three systems that predict snow accumula-
tion on natural surfaces, the PSA predicts snow accumulation
on concrete, which is most relevant for KDEN runway opera-
tions. This may explain some differences in the verification
statistics in section 5. The PSA also includes both short-term
and long-term narratives, which have been noted to be helpful
to airport staff when making decisions (D. Cunningham 2019,
personal communication), but are not evaluated in this quan-
titative study. Only the 3-hourly probabilities of snow in the
short-term and long-term tables were assessed. The 12-hourly

FIG. 4. Schematic highlighting the event threshold definition. The forecast hour/lead is on the
horizontal axis, while the different forecast ensemble members are on the vertical axis. The blue
snowflakes represent the forecast snowfall for each member. In this example, a 10% event oc-
curred from forecast hour 2 to 8, a 25% event occurred from hour 4 to 6, and a 50% occurred at
hour 6.

2 A newer version, not available during the experimental period,
also contains an uncalibrated, automated “first guess.”
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10-in. or more forecasts were not evaluated due to sample
size limitations.

4. Methodology

The methodology outlined in the following subsections was
employed to examine the performance of the forecast products
in the context of the airport snow removal operations. Of par-
ticular interest were the errors in event timing and magnitude,
the reliability of the probabilistic forecasts, and the characteris-
tics of misses and false alarms (i.e., losses and unnecessary
costs).

a. Event definition

An event in this study is defined as accumulating snowfall
with freezing temperatures (2-m air temperature less than or
equal to 328F). Snow events were constrained to a 24-h win-
dow following four operational decision-making/reference
times: 1700, 2300, 0500, and 1100 UTC (corresponding to
1000, 1600, 2200, and 0400 local standard time). Additional
times beyond the actual 1000 local decision time at KDEN
were included for the following reasons: 1) to increase the
sample size, 2) to represent a reasonable extension of the
daily decision time (KDEN receives updates four times per

day during snow storms from their private contractor) (Morss
et al. 2022), and 3) to incorporate the availability of new data
from the SREF and several NBM inputs. A 24-h period corre-
sponds to two 12-h operational shifts at the airport (Morss
et al. 2022). Finally, snow events were merged if the end of
one and the start of another were within 6 h (within the con-
straints of the 24-h period).3 The merging was employed be-
cause the events would be considered a single event from an
airport planning perspective.

The schematic in Fig. 3 illustrates this forecast timeline for
an example snow event. A 24-h window was selected to en-
sure the availability of all forecast products; the NBM has a
maximum lead of 25 h with a 1-h latency. While the NBM has
a short latency, 4 h was assumed for the SREF and HRRRE
based on experiences with data acquisition. Table 3 identifies
which leads compose the 24-h valid periods for the various
products. Ideally, leads 8–31 would have been used for the
SREF, but due to the lower temporal resolution (3-hourly),
which only allowed for leads 9–33, a linear adjustment was

FIG. 5. The number of snow events (with no missing hours) by event threshold for season 2
(all airports). For the forecasts, the markers represent the number of forecast events over the
season using the event threshold to define events; dotted lines are used to connect markers for
easier visualization, but note that data are only available at the five thresholds. For SREF and
HRRRE, a more restrictive event definition (higher event threshold) results in a closer match to
the actual number of snow events that were observed. The number of observed events is inde-
pendent of the forecast event threshold; there were a fixed number of events that occurred re-
gardless of the forecast threshold.

3 The airport operations team did not define a specific time win-
dow for merging events. The 6-h window proposed here is an
attempt to capture the nature of the decisions faced by the opera-
tions team.
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applied to the snow accumulation amounts. All products and
observations were required to be available at each of the four
reference times. Forecast performance for snow accumulation
was calculated only where all forecast data (i.e., every lead

during the 24-h window) were present. For calculations of
timing error, on the other hand, periods with missing data
were included as long as the missing data did not cover con-
secutive hours.

FIG. 6. Reliability diagram for the SREF, NBM, and HRRRE systems. The NBM did not have a
90% forecast. This figure shows data from season 2 and includes all airports.

FIG. 7. As in Fig. 5, but for season 1 data (see Table 1 for list of airports used in season 1). The
NBM was not available in season 1.
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b. Observed events

Hourly precipitation and temperature measurements from
METARs, as well as a mention of snow in the remarks, were
used to determine if a snow event did or did not occur for any
of the 24-h periods. Instances of mixed precipitation (i.e., re-
marks of rain and snow) were not included. To create snow
amount from liquid precipitation records, a 15:1 snow-to-
liquid ratio (SLR), the climatological value for Denver, repre-
sentative of much of the study domain as well (Baxter et al.
2005), was applied. METAR liquid equivalent observations
were used instead of human snow measurements because
the latter were not available for all of the airports included in
the analysis and the observations of snow depth at KDEN
were deemed not sufficiently reliable. Furthermore, since the
three automated forecasts give liquid equivalent, the effect of
SLR errors is removed from the comparison of those products
(SLR errors can affect the scale of the errors, but it will affect
the scale equally for the three automated products), at the
cost of greater uncertainty for the errors in PSA snow amount
forecasts.

c. Forecast events

The probabilistic snow accumulation forecasts were evalu-
ated at 10%, 25%, 50%, 75%, and 90% probability thresh-
olds. The probability threshold was based on the number of
members from the ensemble that met snow event criteria. For

example, at each forecast hour, at least three out of the nine
HRRRE members were required to have snow for a 25%
event (Fig. 4). As illustrated in Fig. 4, each threshold, if
reached, yields a subset of the lower threshold events. While
there were very few 90% events, the airport personnel are
greatly interested in forecast confidence and thus this thresh-
old was included (Morss et al. 2022).

1) SREF AND HRRRE

The methodologies to determine if the SREF or HRRRE
predicted an event were quite similar. Like the observed
METAR events, these forecast events were defined by liquid-
equivalent snow (converted to snowfall with a 15:1 SLR).
The liquid-equivalent snowfall used from the postprocessed
SREF output was a snow accumulation variable (accumula-
tion over only the 3-h time step) while HRRRE events used a
total snow depth variable.4 Minimum, median, and maximum
snowfall from the ensemble members that met event criteria
were recorded for each event snow total. The forecast proba-
bility was determined by a simple frequentist approach, calcu-
lating the percentage of members meeting event criteria. To
be included in the analysis, events were required to have
three-quarters of the ensemble members available (20 out of
26 SREF members and 7 out of 9 HRRRE members).

2) NBM

While the NBM is an ensemble product, only the final
blended output is available and the output variables are not
an exact match for the SREF/HRRRE output. As a result,
snowfall amounts and probabilities are computed differently,
as follows. The NBM events were defined with an unconditional
probability resulting from the product of two raw fields: the
probability of 0.01 in. or greater precipitation within 1 h and
the probability that if precipitation falls, it falls as snow. That is,
p(snow) 5 p(quantitative precipitation forecast $ 0.01 in.) 3

p(snow|precipitation 5 yes); this probability of measurable
snow is then binned using the 10%, 25%, 50%, 75%, and 90%
thresholds. The event snow amounts were determined in two
ways. First, the liquid precipitation was multiplied by a 15:1
SLR (fixed SLR method) to enable a consistent field across all
forecast products. The NBM also includes a snow accumulation
parameter based on a variable SLR. This second method [vari-
able SLR method, see UCAR (2019) for a detailed explanation]
was added to the study for comparison.

3) PSA

To create forecast events from the PSA, the snowfall columns
in Fig. 2 were converted to discrete bins: 0 in., from a trace to
1 in., 1–3 in., and 3 in. or more. An event was created if the proba-
bility of any amount of snow was greater than the (forecast) prob-
ability threshold. For example, an event predicted to occur with a
25% probability was recorded if the probability of 0 in. of snow

FIG. 8. A performance diagram comparing the probability of de-
tection (POD) and success ratio (SR) of the systems. The SR can
also be thought of as 1 2 false alarm rate. The slanted dotted lines
represent bias values with the diagonal implying an unbiased fore-
cast. The curved gray lines represent the critical success index
(CSI). An ideal forecast would be in the top-right corner of the
plot. The markers indicate the forecast probability thresholds.
These data are from season 2 and include all airports.

4 The HRRRE hourly snow accumulation variable was cor-
rupted in postprocessing and, hence, only the positive snow depth
differences (implying snow accumulated between time steps) be-
tween forecast hours were used to define hourly snowfall amount.
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was 75% or less. The lower bound of each bin was used to deter-
mine snowfall amount as the highest bin was unbounded. The fi-

nal snow amount for the event was then calculated based on a
weighted average [Eq. (1)] across the bins:

snowamount 5
(probability of trace–1 in:) 3 0:01 1 (probability of 1–3 in:) 1 (probability of 31 in:) 3 3

(probability of trace–1 in:) 1 (probability of 1–3 in:) 1 (probability of 31 in:) : (1)

FIG. 9. (a) The number of observed NBM missed events and (b) the number of NBM false alarm events by event threshold and snow
amount for all airports in season 2. There were no 90% false alarm events.

FIG. 10. (a) Observed snowfall in PSA missed events and (b) forecast snow amount in PSA false alarms by event threshold (colors) for
season 2. Note, the PSA is only issued for KDEN.
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Due to the irregular issuance of the PSA, the latest available
product issued prior to the reference time was used; if the
closest forecast was over 12 h old, it was not used and that ref-
erence time was skipped.

4) EVENT EQUALIZATION

In the interest of fairness, the forecast events were restricted
to only instances when the SREF, HRRRE, and NBM were all
available (i.e., the issuance was not missing); this check is re-
ferred to as event equalization in this study. The PSA was
treated separately, however. Because it is only valid at one air-
port, removing issuances when one of the other products was
missing resulted in too small of a sample size. For this reason,
PSA events were created from all available PSA data.

d. Pairing forecast and observed events

Within each 24-h period corresponding to a given refer-
ence time, the forecast events were paired with the closest
observed event based on start time. Therefore, matched
events could not have start times more than 24 h apart. All
forecast products were evaluated against hourly METAR
events, even the 3-hourly SREF. The onset timing error was
calculated as the difference between the forecast start time
and the observed event start time. This was done for fore-
cast events at each probability threshold. Similarly, the ces-
sation error was calculated as the difference between the
forecast end time and the last METAR hour that met event
criteria. For example, if snow actually fell from hour 4 to 8
in Fig. 4, then there would be a negative 2-h onset error for

FIG. 11. HRRRE snow amounts in (top) false alarms and (bottom) missed events for (left) season 1 and (right) season 2. Note, season 2
contained data from eight additional airports. The HRRRE snowfall amounts shown in the top row represent the median amount.
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the 10% event and zero cessation error. Alternatively, the
25% event would have no onset error and a negative 2-h
cessation error.

In addition to matched events (hits), false alarm events
(forecast predicted snow when none occurred) and missed
events (snow occurred but the forecast did not predict it)
were recorded. It should be acknowledged here that the terms
“false alarm” and “missed event” are generally out of place in
the context of probabilistic forecasts (e.g., a calibrated 30%
forecast is expected to “false alarm” 70% of time). The terms
are retained in this paper, however, to represent the perspec-
tive of the decision-maker. For each of a set of probability
thresholds, a forecast is classified as a false alarm when the
probability exceeds the threshold (i.e., the decision-maker
would take action) and no snow was observed. Similarly,

when snow occurred but the forecast did not exceed the
given threshold (i.e., the decision-maker would not take ac-
tion), the event would be classified as a missed event. Thus,
the terms false alarm and missed event refer only to the bi-
nary event of snow occurred or did not occur (for a given a
forecast probability), irrespective of the forecast or ob-
served amount.

5. Results

The figures in this section contain data from all event lead
times as there was little change in forecast performance as a
function of lead. Most figures depict season 2 data to allow for
comparison with the NBM unless specified otherwise (i.e.,
seasonal comparisons of the SREF and HRRRE).

FIG. 12. As in Fig. 11, but for the SREF.

WEATHER AND FORECAS T ING VOLUME 381352

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/02/23 02:23 PM UTC



a. Number of events

Perhaps the largest difference between the NBM and the
other forecast products was the number of snow events for
season 2 (Fig. 5). NBM predicted fewer events than the SREF
and HRRRE. At the 10% probability threshold, NBM had
more events than the 1077 observed, but the forecast proba-
bility never reached 90% throughout the season for all air-
ports (only one 90% NBM event was recorded when allowing
for nonconsecutive missing hours; see section 4a). The reli-
ability diagram (Fig. 6) highlights over forecasting by the
NBM, particularly at 50% and below, while the SREF and
HRRRE display overconfidence. All three products suffer
from reduced resolution (i.e., the slope of the reliability
curves is less than one).

Since HRRRE and SREF data were available from both
season 1 and season 2, an interannual comparison was conducted

to determine if forecast performance was affected by the model
system updates in the HRRRE. Changes in forecast difficulty be-
tween the two seasons was accounted for by comparison with
the SREF which did not change. Figure 7 highlights the number
of SREF, HRRRE, and observed events in season 1 for all air-
ports. In season 1, the HRRRE had more events than SREF
while the number of events between the two systems at each
event threshold was more similar in season 2. At thresholds
above 25%, the HRRRE actually had slightly more events in
season 1 compared to season 2 despite fewer observed events
taking place in season 1 (607 events observed in season 1 com-
pared to 1077 observed in season 2). Note that the number of
events in season 1 was dampened by the exclusion of the red air-
ports in Fig. 1. The SREF had about the same number of 75%
events as observed events in both seasons, but the HRRRE had
too many events at all thresholds in season 1.

FIG. 13. Onset timing error by event threshold for the (top left) HRRRE, (top right) NBM, and (bottom) SREF for all airports in sea-
son 2. Negative values (white shaded area) imply the forecast started the event too early. Positive values (yellow shaded area) imply the
forecast started the event too late. The whiskers represent the first and 99th percentiles, the boxes represent the 25th and 75th percentiles,
the middle line represents the median, and the circles represent outliers.
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b. False alarms and misses

Figure 8 not only confirms the biases in the number of
events from Fig. 5, but also depicts the probability of detec-
tion (POD) and success ratio (SR) of the forecast systems. It
is evident that the NBM detected less events compared to the
SREF and HRRRE, but had fewer false alarms (high success
ratio). The 75% threshold for NBM produced a POD of only
4.5% while the SREF and HRRRE had 75% threshold POD
values of 53.1% and 60.5%, respectively. The threshold with
the highest critical success index (CSI) and best bias (closest
to one) was 75% for HRRRE and SREF while only 25%
for the NBM. The performance diagram highlights the signifi-
cant difference in characteristics between the NBM and the
other two systems.

The NBM false alarm and missed events had mostly negligible
snowfall amounts. The operations teams at the airports consid-
ered in this study would have rarely been caught off guard if

they used the NBM information in their decision-making, partic-
ularly concerning the missed events; nearly all missed events had
a quarter of an inch of snowfall or less (Fig. 9a). While there
were more cases of predicted higher snowfall amounts in the
false alarm events, most of these events also had a quarter of an
inch of snow or less predicted (Fig. 9b). There were no 90%
false alarm events.

The PSA false alarm and missed events were comparable
to NBM; there were no significant surprises during season 2.
All missed events had less than or equal to a quarter inch of
snow (Fig. 10a). Missed events included situations where
there was no forecast snowfall within the matching window of
an observed event and when there were two or more ob-
served events that could potentially be paired with a forecast
event: one was matched to the forecast while the other was
counted as a miss. The false alarms were mostly 10% events
with minimal snowfall accumulation (Fig. 10b).

FIG. 14. Cessation timing error by event threshold for the (top left) HRRRE, (top right) NBM, and (bottom) SREF for all airports in
season 2. Negative values (white shaded area) imply the forecast ended the event too early. Positive values (yellow shaded area) imply the
forecast ended the event too late. The whiskers represent the first and 99th percentiles, while the circles represent outliers.
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Information on the false alarms and misses for the SREF and
HRRRE was available for both winter seasons. The number of
false alarms increased slightly for both HRRRE (Fig. 11) and
SREF (Fig. 12) in season 2 (as expected due to the addition of
eight airports), but the distribution of snow amount within those
events was similar between seasons. The number of HRRRE
missed events decreased though in season 2, particularly at the
10% probability threshold (Fig. 11, bottom row). It is worth not-
ing that the HRRRE missed a number of events with more sig-
nificant snowfall (in the 2–4-in. range) whereas the NBM and
PSA only missed events with trivial amounts (Figs. 9 and 10).
The SREF missed more events in season 2 compared to season 1
(Fig. 12).

c. Timing errors

Timing errors are important for the airport decision-makers’
awareness, specifically the accuracy of the start time. It is critical
that maintenance staff, equipment, and materials are ready for
when snow begins accumulating. The timing of events is particu-
larly important during busy hours when closing runways to clear
snow has consequences for not only the airport, but also the Fe-
deral Aviation Administration and the airlines. The forecast end
time of the storm is less critical to the airport personnel. They
often will not remove a snow alert until they have visual confir-
mation that the snow has stopped. Therefore, weather forecasts
of the end time are not utilized as frequently to determine when
clean up can begin (Morss et al. 2022).

The optimal event threshold for producing the smallest tim-
ing errors was quite different for the NBM compared to the
other products. Figure 13 depicts the onset errors for the fore-
cast systems. While the median errors for the HRRRE and
SREF were lowest for the higher event thresholds (75% and
90%), the NBM had the lowest median error at the 25%
threshold. However, the KDEN airport operations team often
like to err on the side of caution and choose a conservative
threshold rather than being surprised with the early arrival of
snow. In that case, the NBM 10% threshold for timing, which

often started the events slightly too early (median error is 1 h
early), would be an appropriate threshold to use so snow re-
moval personnel and equipment would be more likely to be
ready in time for the actual snow event.

Another difference between the two products was the
variability in the errors. The NBM had a smaller interquar-
tile range compared to HRRRE and SREF, especially for
the 10% events; a narrower range means greater consistency
which in turn means greater confidence in decision-making.
In total, 50% of the NBM 10% events (i.e., the interquartile
range represented by length of the box in the top right plot
in Fig. 13) had start times that were within 230 min or less of
the actual start time while 50% of the HRRRE events had
start times that were within over ;400 min of the actual
start time; both forecast systems predicted the onset too
early. The cessation errors were similar in that the most
accurate event threshold for NBM was the 25% threshold
(Fig. 14). As with the onset of snow, the 10% threshold
would be the conservative choice for cessation, often pro-
viding events that ended a little too late. Higher thresholds
for the NBM produced events that ended too early whereas
the HRRRE and SREF only ended on time or much later
than observed.

It is worth noting that the 3-h lead steps for the SREF
disadvantage that product relative to the other, 1-h lead prod-
ucts. Biases in the mean timing error are potentially exacer-
bated and the variability of the timing error distribution will
be inflated. A subjective adjustment of the SREF distributions
would suggest that SREF performance characteristics are more
similar to those seen for the HRRRE.

Like the HRRRE and SREF (e.g., Fig. 13), the PSA timing
errors were smallest for the higher event thresholds (Fig. 15).
For onset of events, the PSA was on time (in terms of the me-
dian error) for thresholds of 50% or higher, otherwise it
tended to be early. The PSA events were mostly late to end
except for the 90% threshold. The cessation errors were
generally larger than the onset errors and there was greater

FIG. 15. PSA timing errors by event threshold: (left) onset and (right) cessation for KDEN in season 2.
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variability in the cessation errors. The greater variability in
cessation errors could be attributed to it being a longer-range
forecast compared to the beginning of the event or that the
forecasters generally are more conservative with cessation
timing (they keep a small amount of snow in the forecast to
be cautious). Compared to the NBM timing, the PSA pro-
vided several options if a conservative approach is desired
(i.e., a longer event duration that likely captures the actual ex-
tent of the event). For the start of the event, either a 10% or
25% threshold would likely provide an earlier onset time,
while any threshold below 90% would likely provide a later
cessation time. A 75% threshold for cessation would still com-
ply with a conservative approach without the much larger er-
rors associated with the lower thresholds.

The HRRRE and NBM timing errors at KDEN are illus-
trated in Fig. 16. The NBM and HRRRE had similar onset er-
rors, but compared to Fig. 15, the PSA had slightly higher
errors, particularly at 10% and 25% thresholds where
events started too early, comparatively. Alternatively, for
cessation, the HRRRE had larger errors than NBM. Recall
that the higher thresholds for NBM were very rare and

therefore there was not enough of a sample for those analyses.
As was seen with the timing plots using all airports, the NBM
at KDEN had much less variability than the other two prod-
ucts as evidenced by the much smaller interquartile range.

d. Snow amount errors

As expected, the snow amount errors for NBM varied by
event threshold (Fig. 17). While the presentation of the results
in Fig. 17 may be untraditional, it can be used by the airport
decision-maker to answer the following question: “If I base
my decision on whether threshold X is exceeded, what sort of
errors can I expect?” The largest biases occurred for the 75%
events (90% was excluded due to lack of data). The NBM
snow amount was closest to the observed [in terms of both
mean error or bias and root-mean-square error (RMSE)] for
the 10% events, but the product still had a slight high bias
(Fig. 17a). The NBM had slightly higher biases at KDEN
where the 10% events overforecast snowfall by 0.6 in. (Fig. 17b).
There were not many events at KDEN that met the higher
thresholds (50% and above). Therefore, the error curves beyond

FIG. 16. (left) Onset and (right) cessation timing errors by event threshold at KDEN for the (top) HRRRE and (bottom) NBM in season 2.
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the 50% threshold are poorly defined. The fixed and variable
SLR methods had similar biases suggesting that the climato-
logical average (fixed) SLR was a decent approximation for
the forecast (variable) SLR (which was not available from
the SREF and HRRRE). The biases for the fixed and vari-
able SLR were also stratified by observed snow amount and

the two methods produced very similar results regardless of
event intensity (not shown). It is unknown if the observed
SLR was close to 15:1, but all forecast-observation compari-
sons for the SREF, HRRRE and NBM were done using the
liquid-equivalent value and thus the SLR is irrelevant to the
skill scores.

FIG. 17. NBM snow amount errors for (a) all airports and (b) KDEN only. The orange lines represent the fixed 15:1 SLR while the gray
lines represent the snow amount directly from the NBM (variable SLR). Note, the sample size for the 50% events in (b) is only 10 events
and only 2 for 75% events, hence, the noisiness of the curves at the upper thresholds. There were 37 10% events and 25 events at the 25%
threshold in (b).

FIG. 18. NBM snow errors by observed snowfall amount for all airports in season 2: (a) bias and (b) mean absolute error. The observed
snowfall was binned to the same bins as were used when evaluating the PSA.
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The observed severity of snow events was discovered to
have an impact on the snowfall errors (Fig. 18). The NBM
bias (mean error) was low for the 10% and 25% event thresh-
olds regardless of observed snowfall amount. However, for
higher thresholds, the bias improved with more observed
snowfall. While the NBM biases were nearly zero for the 10%
and 25% event thresholds, for the observed events that had
1–3 in. of snow, the higher mean absolute error (MAE) value
(Fig. 18b) indicates a cancellation effect. The typical error was
around 1.5 in., but there were instances where the NBM over-
forecast and underforecast snowfall.

Unlike the NBM, there was more consistency between
forecast thresholds with the SREF and HRRRE, particularly
the HRRRE (Fig. 19). While the NBM mean error varied by
about 2 in. across forecast thresholds at the trace–1-in. cate-
gory, the HRRRE mean error was around 0.75 in. for all
thresholds. Using the median snow amount from the ensem-
bles resulted in a positive bias, even for the lowest thresholds
(which had a lower bias in the NBM). There was also less
change in error across the observed snowfall bins for most
SREF and HRRRE thresholds compared to the 50% and
75% NBM curves.

FIG. 19. As in Fig. 18, but for the (top) SREF and (bottom) HRRRE. The forecast snowfall presented is the median of the ensemble mem-
bers. Data from all airports are included and are from season 2.
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Recall that the PSA product used in this study is specific to
KDEN. The PSA (Fig. 20) had similar snowfall errors to the
NBM (Fig. 17). Both had a ;0.6-in. bias for 10% events at
KDEN. Unlike the NBM though, the PSA bias was nearly in-
dependent of the event threshold. Despite using the lower
bound of the PSA bins to define snow amount, the product
still slightly overforecast snowfall. Consider a scenario in
which a forecaster was very confident that 2 in. of snow would

accumulate. With the methodology used, the resulting fore-
cast in the PSA would be for 1 in. (i.e., a 100% chance of ex-
ceeding 1 in. and 0% chance of exceeding 3 in.). If 3 in. of
snow were observed, the resulting error would be 22 in.
rather than the “true” (but unknowable, from the PSA per-
spective) error of 21 in. This method is similar to using the
minimum amount from the ensemble products. If a product
user assumed the high side of the forecast range, one would
expect the snowfall errors in Fig. 20 to be greater.

The consistency in PSA performance across event thresh-
olds is also evident when stratified by observed snow amount
in Fig. 21. All thresholds had the lowest bias (least overfore-
casting) for 1–3-in. observed events. The larger MAE value
for that bin indicates cancellation of errors. For example,
75% forecasts were typically off by about 1 in. (MAE), but it
was almost as likely to forecast too little as too much snow re-
sulting in an average of nearly zero (bias). The largest errors,
both biases and MAE values, occurred for more significant
observed events. There were three observed snow events that
had 3 in. or more of snow resulting in 12 forecast–observation
pairs due to multiple reference times and leads. Therefore,
the larger errors could be a result of a small sample size.

As discussed in section 3, there were a number of HRRRE
improvements made between seasons one and two that could
have impacted the snowfall forecast performance. However,
the following results suggest the changes had a negligible im-
pact to the performance of the parameters included in this
study. Changes in HRRRE snow amount errors were compara-
ble to the SREF which can be treated as a baseline (Fig. 22). The
RMSE values for both products were reduced in season 2 and the
biases using the minimum snowfall from the ensemble slightly
improved. One minor change to the HRRRE performance in

FIG. 20. PSA snowfall errors from season 2 at KDEN by event
threshold.

FIG. 21. PSA snowfall errors in season 2 by observed snow amount and event threshold at KDEN: (a) bias and (b) mean absolute error.
Event thresholds are indicated by the different colors.
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season 2 was that the errors were less influenced by the event
threshold. In season 1, the bias curves had more of a negative
slope highlighting the impact of changing the probability thresh-
old (lower left plot in Fig. 22).

At KDEN, the HRRRE (Fig. 23) was on par with the PSA
and the NBM 10% snow amount bias (Figs. 20 and 17). While
the minimum snowfall (from the ensemble member with the
least nonzero snow accumulation) from the HRRRE pro-
duced the smallest bias, it also underforecast snow amount.
Choosing the median HRRRE snow amount resulted in a
larger positive bias, but would allow airport decision-makers
to be overprepared instead of underprepared, which was found

to be their preferred mode (Morss et al. 2022). As was discussed
previously with event timing, the airport also prefers to be con-
servative with snow amount and overestimate snowfall slightly
to make sure they have enough personnel and supplies ready.

6. Summary and conclusions

In this study, the SREF, HRRRE, NBM, and PSA were
evaluated with respect to snowfall forecast performance in
the context of airport winter weather operations. The prod-
ucts were assessed using an impact-based event methodology
and compared to METAR observations to determine snow

FIG. 22. Snowfall errors by event threshold for (left) season 1 and (right) season 2. Note, there were fewer airports included in season 1.
(top) SREF results and (bottom) HRRRE results. The different colored lines represent the minimum, median, and maximum snow amounts
from the members of the ensemble that had an event. The different line styles represent the different statistics: bias, MAE, and RMSE.
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amount and timing errors. Overall, all of the probabilistic
forecast products effectively provide information that would
allow DIA operations to select forecast thresholds according
to their needs: most accurate, most conservative, etc. The first
specific conclusion from this assessment was that the NBM
had quite different characteristics than the SREF, HRRRE,
and PSA. The NBM had fewer events and rarely used higher
probabilities, unlike the other products which more often had
75% and 90% events. The NBM had the best timing of snow
events. While other forecast products also had a median tim-
ing error of zero, the range of NBM errors was narrower.
With regard to snow amount, the NBM had mostly positive
mean errors which increased with forecast probability thresh-
old, particularly for low accumulation observed events (from
a trace to 1 in.). The SREF and HRRRE median snow errors
were more consistent across event threshold and observed
snowfall amount. Additionally, the NBM had higher errors at
KDEN compared to all airports in aggregate.

The PSA performed similarly to the NBM and HRRRE.
Its snow amount bias, which was independent of event thresh-
old, matched that of the optimal NBM and HRRRE thresh-
olds. Like the NBM, the PSA did not have many missed
events and those that did occur had minimal snowfall. The
false alarms produced by the three products were also mostly
minor events (i.e., had low forecast snow amounts). The simi-
larities in performance among these forecast systems can par-
tially be attributed to their dependence; the human-generated
forecast is not independent of the others (except for the
HRRRE as it was not operational) and the deterministic
HRRR is an input to the NBM.

Additionally, an interannual comparison of the HRRRE and
SREF highlighted that there were not meaningful changes in
snowfall forecast performance between the 2018/19 and 2019/20

winter seasons. This conclusion was reached considering that
SREF, whose configuration remained the same, had similar
variations between the two seasons as the other systems did.
It is worth mentioning that improvements may be seen if the
successor to the HRRRE, the Rapid Refresh Forecast System
(RRFS), is run more frequently than every 12 h as it was during
this evaluation.

One shortcoming of this work should be noted, that despite
expanding the domain to two dozen Intermountain West air-
ports (with roughly similar weather to KDEN) over two win-
ter seasons, there were few heavy snow events (nine events of
61 in. in season 1 and 14 events in season 2). Therefore, the
results are dominated by events accumulating a few inches or
less, which are not the types of events that cause major prob-
lems for the KDEN operations, and so any conclusions about
forecast performance for heavier snow can only be provi-
sional. It is also possible that the apparent triviality of the
false alarms and missed events (i.e., that they present little im-
pact to airport decision-making) is at least in part due to this
dominance of minor snow events. There is greater reason for
confidence in the timing error results, as one might expect the
smaller events to be preceded by a weaker signal and thus
have greater uncertainty.

This study not only resulted in the determination of snow-
fall forecast errors of various probabilistic systems, but also
prompted further product development and strengthened the
relationship between KDEN and the NWS Boulder WFO.
The PSA was refined after season 1 to better match the
airport’s needs, specifically with higher temporal resolution, and
with accumulation thresholds consistent with those triggering
KDEN’s updated operational alert levels. Additionally, the air-
port operations team reported an increase in PSA usage.

After the SREF is retired and a HRRRE-like ensemble
becomes operational within the RRFS framework, it will be
important to reevaluate the capabilities of the available prob-
abilistic forecast systems to provide useful information in the
context of aviation and airport decision-making. A future
evaluation could also incorporate a dynamic or temperature-
adjusted SLR instead of a climatological value to account for
the variations in conditions geographically, seasonally, etc.
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FIG. 23. As in Fig. 22, but for HRRRE snow amount errors at
KDEN for season 2.
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platform with the exception of METAR data and the PSA.
METAR data can be obtained through the Iowa State University
website: https://mesonet.agron.iastate.edu. The PSA text product
is available at https://forecast.weather.gov/product.php?site=
BOU&product=OPU&issuedby=BOU. Iowa State University
has a long-term archive of the PSA (product OPUBOU) at
https://mesonet.agron.iastate.edu/wx/afos/list.phtml. The HRRRE
is not yet operational and thus data were obtained directly from
the developers (contact: David Dowell at David.dowell@noaa.
gov), while the SREF was retrieved from the NCEP Products
Inventory, which maintains a rolling stream of several days
of data.
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